Geometric Structures and Varieties of Representations

نویسنده

  • WILLIAM M. GOLDMAN
چکیده

Many interesting geometric structures on manifolds can be interpreted as structures locally modelled on homogeneous spaces. Given a homogeneous space (X,G) and a manifold M , there is a deformation space of structures on M locally modelled on the geometry of X invariant under G. Such a geometric structure on a manifold M determines a representation (unique up to inner automorphism) of the fundamental group π of M in G. The deformation space for such structures is “locally modelled” on the space Hom(π,G)/G of equivalence classes of representations of π → G. A strong interplay exists between the local and global structure of the variety of representations and the corresponding geometric structures. The lecture in Boulder surveyed some aspects of this correspondence, focusing on: (1) the “Deformation Theorem” relating deformation spaces of geometric structures to the space of representations; (2) representations of surface groups in SL(2;R), hyperbolic structures on surfaces (with singularities), Fenchel-Nielsen coordinates on Teichmüller space; (3) convex real projective structures on surfaces; (4) representations of Schwarz triangle groups in SL(3;C). This paper represents an expanded version of the lecture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification and properties of acyclic discrete phase-type distributions based on geometric and shifted geometric distributions

Acyclic phase-type distributions form a versatile model, serving as approximations to many probability distributions in various circumstances. They exhibit special properties and characteristics that usually make their applications attractive. Compared to acyclic continuous phase-type (ACPH) distributions, acyclic discrete phase-type (ADPH) distributions and their subclasses (ADPH family) have ...

متن کامل

Polarization Measurement aboard the Satellite and Solution of the Emission Mechanism of the Gamma-Ray Bursts

Tetsushi Ito (Kyoto University, Graduate School of Science, Assistant Professor) 【Outline of survey】 Shimura varieties are algebraic varieties (geometric objects defined by equations), which are generalizations of modular curves. Previously, several mathematical objects in arithmetic geometry, Galois representations, automorphic representations were studied from individual perspectives. However...

متن کامل

A Geometric Realization of Spin Representations and Young diagrams from Quiver Varieties

In [FS], we related two apparently different bases in the representations of affine Lie algebras of type A: one arising from statistical mechanics, the other from gauge theory. In particular, using geometric methods associated to quiver varieties, we were able to give an alternative and much simpler geometric proof of a result of [DJKMO] on the construction of bases of affine Lie algebra repres...

متن کامل

Varieties of Uniserial Representations Iv. Kinship to Geometric Quotients

Let Λ be a finite dimensional algebra over an algebraically closed field, and S a finite sequence of simple left Λ-modules. Quasiprojective subvarieties of Grassmannians, distinguished by accessible affine open covers, were introduced by the authors for use in classifying the uniserial representations of Λ having sequence S of consecutive composition factors. Our principal objectives here are t...

متن کامل

On Two Geometric

Ginzburg and Nakajima have given two different geometric constructions of quotients of the universal enveloping algebra of sln and its irre-ducible finite-dimensional highest weight representations using the convolution product in the Borel-Moore homology of flag varieties and quiver varieties respectively. The purpose of this paper is to explain the precise relationship between the two constru...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1988